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We have measured the dynamic structure factor of liquid parahydrogen, pure and mixed with deuterium, in
various thermodynamic conditions using incoherent inelastic neutron scattering. The experiments were carried
out on TOSCA-II, a new time-of-flight, inverse-geometry, crystal-analyzer spectrometer. After an accurate data
reduction, the high-energy parts of the neutron spectra recorded in backward scattering were studied through
the modified Young and Koppel model, from which the mean kinetic energy values for a hydrogen molecule
were estimated. In addition the low-energy parts of the neutron spectra recorded in forward scattering were
analyzed in the framework of the Gaussian approximation and fitted through a Levesque-Verlet model for the
velocity autocorrelation function. Thus various physical quantities are determined and compared with accurate
path integral Monte Carlo simulations. Despite the excellent quality of these fits, the velocity autocorrelation
functions derived from the forward-scattering data appear totally unable to properly describe the backward-
scattering ones. These findings prove an unquestionable breakdown of the Gaussian approximation in semi-
quantum liquids. The present results appear of great interest and suggest further investigation on the limits of
the widely used Gaussian approximation.
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I. INTRODUCTION

Understanding the microscopic dynamics of liquid sys-
tems exhibiting moderate quantum effects(in short, semi-
quantum liquids), such as4He above thel transition,3He
warmer than its Fermi temperature, molecular hydrogen,
deuterium, tritium, neon, and their various mixtures, is still
one of the open problems in condensed matter physics[1]. In
general, semiquantum liquids are fluid systems in which their
actual temperature is lower than their Debye temperature[2],
the latter being defined from the evolution of their macro-
scopic thermodynamic properties[3]. However, differently
from the highly quantum fluids(e.g., superfluid4He, degen-
erate liquid 3He, and jellium), the corresponding quantum
statistics(Bose-Einstein or Fermi-Dirac) seems to play no
significant role in semiquantum liquids[4], so that it is sen-
sible to apply the Maxwell-Boltzmann statistics to describe
their properties. Several theoretical approaches have been
tried in the past to describe the microscopic dynamics of
semiquantum liquids, the most noticeable of which are prob-
ably the Hubbard and Beeby solidlike method[5], semiclas-
sical dynamics[6], and variational density-matrix theory[7].
However, despite some interesting results, none of them has
proved to be general and accurate enough to be considered as
thoroughly satisfactory. More recently the well-known
mode-coupling theory has been modified to deal self-
consistently also with semiquantum liquids[8]. Although it
contains a fewad hocassumptions and needs some external
inputs from a static quantum simulation, this approach seems
the most promising in terms of its capability to evaluate dy-
namic quantities, such as collective-excitation dispersion
curves, velocity autocorrelation functions, self-diffusion co-
efficients, etc.[9]. On the other hand, computer simulations
have managed in the last 20 years to cope almost completely
with the statics of quantum liquids through the well-known

path integral Monte Carlo(PIMC) technique[10]. However,
as far as the dynamics is concerned, the same accuracy,
needed to provide quantitatively precise predictions for all
the relevant physical features, has not yet been reached. At
the moment, the Feynman path centroid dynamics[11] is
surely the simulation technique producing the best results for
semiquantum liquid dynamics. In addition, the Wigner semi-
classical dynamics approach[12], although still in its in-
fancy, seems quite promising.

Given this scenario, any precise experimental determina-
tion of dynamic quantities(i.e., time-correlation functions or
their frequency spectra) that can be compared to correspond-
ing theoretical predictions becomes highly valuable. An ex-
ample of this method is the recent case of liquid parahydro-
gen, where both collective[13] and single-particle dynamics
[14] have been studied by means of neutron spectroscopy
and positively compared with the most recent results coming
from self-consistent mode-coupling theory(SCMCT) [9] and
Feynman path centroid dynamics[15]. In the present work
we aim to present experimental results on the microscopic
single-particle dynamics(also known asself-dynamics) of
pure liquid parahydrogensH2d, and in its mixtures with liq-
uid orthodeuteriumsH2+D2d. These hydrogen-based liquid
systems have been selected for two reasons: first because of
their clear and evident semiquantum character, which has
attracted a number of theoretical studies, simulations, and
experimental works[16]; and second, because of the peculiar
molecular hydrogen properties when H2 is interacting with
thermal neutrons: as explained in detail in the literature[17],
it is possible to single out the self-dynamics of the parahy-
drogen molecular centers of mass(c.m.’s) in a condensed
system by means of inelastic neutron scattering[14]. In other
words, the neutron scattering double-differential cross sec-
tion of a collection of parahydrogen molecules can be easily
related to the self part of the c.m. inelastic structure factor
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[18] Sself,c.m.sQ,vd (with "Q and "v being the momentum
and the energy transfers, respectively), which is an intrinsic
physical property of the hydrogen-containing system under
investigation related to the single-H2-molecule dynamics.

At this stage, it is a common practice to try to connect
Sself,c.m.sQ,vd to the power spectrum of the velocity autocor-
relation function(VACF) kvWs0d ·vWstdl [19]. However, when-
everSself,c.m.sQ,vd is not available in a wideQ range so that
a low-Q extrapolation becomes possible, this connection is
attempted by means of the well-known Gaussian approxima-
tion (GA) [20]. The latter has been proved to be exact in
some simple model systems: a perfect gas, a harmonic solid,
and a fluid in which the particle movements are governed by
the Langevin equation[20]. In addition, as"v becomes
much larger than the typical scale of interparticle binding
energies, the well-known impulsive regime(or impulse ap-
proximation [18]) is approached and, once again, the GA
holds exactly(but in a highly simplified form), provided the
single-particle momentum distribution in the system exhibits
a purely Gaussian character[18]. This fact is generally ex-
ploited in order to extract single-particle mean kinetic energy
estimates fromSself,c.m.sQ,vd in the limit of very large values
of Q andv, i.e., through the so-called deep inelastic neutron
scattering technique.

Even though it has been found by some neutron scattering
experiments[21] and molecular dynamics simulations[22]
on classical fluid argon that there exist areas of thesQ,vd
kinematic plane in which the GA does not hold precisely, the
latter is still widely used(both in computational[9] and in
experimental works[14]), and no complete critical assess-
ment about its validity has been undertaken, especially in
connection with semiquantum liquids. Thus, together with
the determination of the c.m. mean kinetic energy of para-
H2 in the aforementioned semiquantum systems, one of the
purposes of the present study is to shed more light on the GA
when applied to liquid parahydrogen and to its mixtures with
orthodeuterium. The experimental procedure will be de-
scribed in detail in Sec. II. In Sec. III we will work out the
self inelastic structure factor of liquid parahydrogen and its
mixtures from the experimental spectra. In addition, we will
explain(1) how to extract the c.m. mean kinetic energy of H2
from the high-v data recorded by TOSCA-II backscattering
detectors;(2) how to obtain the H2 velocity autocorrelation
spectrum by using the Gaussian approximation on the low-v
data recorded by TOSCA-II forward-scattering detectors.
Section IV will be fully devoted to the computational details
concerning the PIMC simulations performed, with special
reference to the codes dealing with quantum and semiquan-
tum liquid mixtures. In Sec. V, we will discuss the results
and we will check the validity of the GA using the low-v
data from the backscattering detectors. Then the physical
quantities derived from the experimental spectra will be
compared to their estimates obtained from the literature and
from the aforementioned PIMC simulations. Section VI will
be finally devoted to conclusions and perspectives.

II. EXPERIMENT DESCRIPTION

Neutron scattering measurements were carried out on
TOSCA-II, a crystal-analyzer inverse-geometry spectrometer

operating at the ISIS pulsed neutron source(Rutherford
Appleton Laboratory, Chilton, Didcot, U.K.) [23]. The inci-
dent neutron beam spanned a broad energysEd range and the
energy selection was carried out on the secondary neutron
flight path using the(002) Bragg reflection of ten graphite
single crystals, five placed in backscattering around a scat-
tering angle of 137.7°, and five in forward scattering around
a scattering angle of 42.6°. This arrangement fixed the aver-
age Bragg angles on graphite to 47.7° and 47.4°(in back-
scattering and forward scattering, respectively), correspond-
ing to scattered neutron energies of 3.32 and 3.35 meV.
Higher-order Bragg reflections were filtered out by 120-
mm-thick beryllium blocks cooled down below 35 K. This
geometry allowed us to cover an extended energy transfer
range, even though the fixed positions of the crystal analyz-
ers and the small values of the final neutron energysE8d
imply a variation in the momentum transfer, which is a func-
tion of the energy transfer. In this way, the two parts of
TOSCA-II (namely, the backscattering and forward-
scattering sections) explore two narrow stripes in thesQ,vd
kinematic space(see Fig. 1), starting atv=0, respectively,
from Q=23.61 and 9.20 nm−1, then both increasing approxi-
mately ass2mnv /"d1/2, wheremn is the neutron mass. The
resolving power of TOSCA-II is quite goods1.5%
,D"v /E,3%d in the energy transfer region presently ac-
cessible by the spectrometers3,"v,1000 meVd. The ex-
tended spectral range of TOSCA makes this instrument a sort
of neutron equivalent of a Raman optical spectrometer, the
main difference being the momentum transfer assuming a
value sensibly larger than zero, and monotonically growing
along with the energy shift.

The experimental measurements were performed in two
different experimental sessions: the first was devoted to pure
liquid hydrogen(two thermodynamic points), while the sec-
ond to liquid hydrogen mixed with deuterium(three thermo-
dynamic points). A comprehensive description of the
samples(including species, temperature, H2 concentration,
pressure, total molecular density, and integrated proton cur-
rent) can be found in Table I. As far as the total molecular

FIG. 1. Wave-vector transferQ accessible by TOSCA-II in
backscattering(full line) and forward scattering(dashed line) as a
function of the energy transfer"v.
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density is concerned, the reported estimates were obtained
from the most reliable thermodynamic data available in the
literature: Ref.[24] for pure hydrogen, Ref.[25] for pure
deuterium, and Ref.[26] for hydrogen-deuterium mixtures.
Another important issue is the rotational population of the
hydrogen(and deuterium, to a lesser extent) molecules com-
posing the experimental samples: as it will be made clear
later in this section, equilibrium hydrogen(and deuterium)
have always been employed. In this respect, considering the
temperature values reported in Table I, one can assume for
all the four samples that we are dealing only with parahydro-
gen (and orthodeuterium) species, since fp-H2g / fH2g
ù99.82% andfo-D2g / fD2gù98.00%.

The first measurement was carried out on pure liquid hy-
drogen atT=14.1 K (i.e., on sample no. 1 as in Table I).
After performing a background measurement of the empty
cryostat, we cooled the sample container to the desired tem-
perature(i.e., T=14.1 K) and we measured its time-of-flight
(TOF) neutron spectrum up to an integrated proton current of
1400.6mA h. Then normal hydrogen was allowed to con-
dense in the scattering cell. This was made of aluminum
(1.0-mm-thick walls) with a circular-slab geometry. The
sample thickness was also 1.0 mm and the cell diameter
s55.0 mmd was slightly larger than the beam cross section
s40.0340.0 mm2d. The pressure of the gas handling system
was set top=0.565 bar[slightly larger than the correspond-
ing saturated vapor pressuresSVPd=0.084 bar atT=14.1 K
[24]]. At the bottom of the scattering container, out of the
neutron beam, some powder of a paramagnetic catalyst,
made of Cr2O3 on an Al2O3 substrate, was inserted in order
to speed up the conversion from ortho- to parahydrogen. The
relative concentration of the two species was monitored by
looking at the scattering spectrum in the"v region between
3 and 12 meV. In particular, we could observe the progres-
sive disappearance of theJ=1→J8=1 transition (i.e., the
broadened quasielastic line, whereJ andJ8 are the initial and
final rotational quantum numbers, respectively), which is
weighted by a linear combination between the incoherent
and the coherent cross sections of the proton[17]. When this
spectral feature was below the limit of detectability(in prac-
tice, masked by theJ=0→J8=0 transition, which is
weighted only by the small coherent cross section of the
proton), we assumed that equilibrium had been reached. The
equilibration process took, in our case, about 17–20 h. Then
we started recording the scattering spectrum. The stability of
the thermodynamic conditions during this measurement was
satisfactory: the temperature and pressure uncertainties were

estimated to be around 0.1 K and 3 mbar, respectively. Raw
spectra of liquid hydrogen atT=14.1 K from backscattering
and forward-scattering detectors are separately reported in
Fig. 2.

The second pure liquid hydrogen sample(i.e., namely, no.
2 at T=17.3 K) was prepared and measured following ex-
actly the same procedure used for the previous one. On the
contrary, the mixture samples nos. 3 and 4 were obtained in
a different and more elaborated way. Let us summarize the
main steps of the procedure followed to produce the first
liquid H2+D2 mixture (i.e., sample no. 3 withfH2g=54.3%),
recalling that the second was prepared similarly. Gaseous
parahydrogen and orthodeuterium were produced boiling off
the two liquids at 22 and 25 K, respectively, and then mixed
in a buffer volume at room temperature under a pressure of
1.34 bar. The exact amount of gaseous mixture needed to fill
up the sample cell(identical to the can already used for pure
hydrogen) with the corresponding liquid was allowed to con-
dense in it(at T=20.0 K andp=0.66 bar). Then the cell was
cooled down to 11 K, so as to decrease the vapor pressure of
the gas handling line to an extremely low valuesp
ø0.01 bard. This step was regarded as very important in or-
der to prevent an undesired separation of the mixture[27],
where the more volatile gas(i.e., H2) could concentrate in
the buffer volume, while the less volatile(i.e., D2) condensed
in the coldest point of the gas line, namely, the sample cell.
This would have altered the mixture composition in a quite
noticeable way. At the end, the sample can was isolated from
the rest of the gas handling line and warmed up to the de-
sired experimental temperaturesT=20.0 Kd. It is worth not-
ing that the mixture was prepared on a time scale of a few
hours, probably too short to alter thefp-H2g / fH2g and fo-
D2g / fD2g ratios. However, in order to avoid the risk of any
substantial orthohydrogen contamination, the paramagnetic
catalyst(still contained at the bottom of the sample cell) was
given some time to reestablish thermodynamic equilibrium
conditions, and the measurement was started roughly 20 h
after the end of the can filling procedure. As in the case of
the pure hydrogen samples, an empty sample-container mea-

TABLE I. Thermodynamic conditions of the measured liquid
samples, including species, temperatureT, H2 concentrationfH2g,
pressurep, total molecular densityn, and integrated proton current
C.

No. species TsKd fH2gs%d psbard nsnm−3d CsmA hd

1 pure H2 14.1(1) 100.0 0.565(3) 22.95(3) 2567.1

2 pure H2 17.3(1) 100.0 0.735(3) 22.08(3) 2256.6

3 H2+D2 20.0(9) 54.3(3) 0.659(2) 23.51(9) 1955.6

4 H2+D2 20.0(2) 33.0(9) 0.533(9) 24.41(4) 1070.9

FIG. 2. Raw neutron scattering spectra from liquid hydrogen at
T=14.1 K measured by backscattering(full line) and by forward-
scattering(dotted line) detectors.
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surement was also operatedsintegrated proton current,C
=721.7mA hd, even though the cell was practically identical
to the one used in the pure H2 measurements. In addition, a
pure liquid orthodeuterium(at T=21.3 K andp=0.76 bar)
spectrum was recorded with good accuracysC
=2062.5mA hd.

III. DATA REDUCTION AND ANALYSIS

The experimental TOF spectra were transformed into en-
ergy transfer data, detector by detector, making use of the
standard TOSCA-II routines available on the spectrometer,
and then added together in two distinct blocks: one including
the backscattering detectors and the other the forward-
scattering ones(see Fig. 2). This procedure was justified by
the narrow angular range spanned by each set of detectors,
since the corresponding full width at half maximumDu was
estimated to be 8.32° and 8.82° for the backscattering and
the forward-scattering banks, respectively[23]. In this way,
we produced two double-differential cross-section measure-
ments along the TOSCA-II kinematic paths(QF,Bsvd ,v) for
each sample of Table I(plus, of course, background, empty
can, and pure D2 spectra). Then data were corrected for the
k8 /k factor and the respective empty-can contributions were
properly removed from each spectrum.

At this stage the important correction for theself-
absorptionattenuation was performed. This was applied to
experimental data through the analytical approach suggested
by Agrawal in the case of a flat slablike sample[28]: no
simplified model was employed for the parahydrogen total
scattering cross sectionst,p-H2

sEd, which, on the contrary,
was obtained from the experimental results of direct mea-
surements on the SVP liquidp-H2 at T=16.0s2dK [29]. As
for the total cross section of the H2+D2 mixtures, a proper
linear combination of the aforementioned quantityst,p-H2

sEd
with the total scattering cross sections of liquid deuterium
[30] was assumed to be accurate enough for the self-
absorption correction. The same total scattering cross section
of D2 was also used to evaluate the self-absorption in the
pure liquid deuterium spectrum recorded on TOSCA-II.

Before proceeding with the rest of the data analysis(e.g.,
evaluating multiple scattering contributions, fitting spectral
features, etc.), we decided to divide our study into two dis-
tinct tasks: evaluating the H2 translational mean kinetic en-
ergy, and extracting the H2 velocity autocorrelation function
spectrum.

A. Evaluation of the H2 translational mean kinetic energy

The processed spectral data had become, at this point,
proportional to the double-differential cross section of the
liquid samples(projected on the two TOSCA-II kinematic
paths) plus, in addition, multiple scattering contributions and
an unavoidable sample-dependent background. In order to
evaluate the H2 translational mean kinetic energy, we de-
cided to restrict our analysis to backscattering data in the
100,"v,700 meV range. The reason for this choice is
clearly explained in Refs.[31,32], but it can be summarized
here as follow. Our fitting procedure, which is based on the

so-called modified Young-Koppel(MYK ) model [17], im-
plicitly assumes the validity of both the incoherent[33] and
the impulse[18] approximations. For a fixed value of"v,
these approximations become more and more precise as the
wave-vector transfer grows to infinity. In practice, previous
measurements on similar H2 samples[31,32] have proved
that the conditionQ.80 nm−1 is enough for a reasonable
application of the MYK model. In the backscattering spectra
this is verified for"v.100 meV(see Fig. 1), while in the
forward-scattering ones"v.165 meV is needed. However,
even a simple inspection of Fig. 2 shows that the former data
exhibit a much more intense rotational structure(whose
width is actually determined by the value of H2 translational
mean kinetic energy) than the latter, so consequently only
backscattering data in the 100,"v,700 meV range will be
analyzed in the rest of this subsection.

Before applying the fitting procedure to the complete
backscattering data set, it is important to isolate the hydrogen
contribution contained in the experimental double-
differential cross sections,sd2s /dVdEd (leaving multiple
scattering and sample-dependent background aside for the
moment). For the binary mixture samples(nos. 3 and 4), in
the framework of the incoherent approximation, one can al-
ways write the double-differential cross section as the sum of
two components[18] only:

S d2s

dV dE
D = fH2gS d2s

dV dE
D

H2

+ s1 − fH2gdS d2s

dV dE
D

D2

,

s1d

one deriving from hydrogen,sd2s /dVdEdH2
, and the other

from deuterium,sd2s /dVdEdD2
, where fH2g stands for the

hydrogen concentration. The latter double-differential cross
section has been removed making use of the experimental
pure liquid deuterium spectrum, properly scaled in order to
take into account sample molecular densities and deuterium
concentrations. Small spectral discrepancies induced by the
slightly different thermodynamic conditions(temperature,
molecular density, etc.) are at this stage totally irrelevant
since the deuterium contribution to the experimental double-
differential cross sections is small and rather featureless, at
least in the present energy transfer range.

Making use of the aforementioned MYK model[17], we
set up a simple fitting procedure of the hydrogen contribution
to the experimental backscattering data,IH2,exptsv ,uBd,
through the following function:

IH2,exptsv,uBd = FA
k

k8
S ds2

dV dE
D

r-v
^ Sself,c.m.

sIAd sQ,v − v0d

+ BsvdG ^ RTosca,Bsvd, s2d

whereSself,c.m.
sIAd sQ,vd is theself inelastic structure factor for

the hydrogen center of masswritten in the framework of the
impulse approximation(IA ):
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Sself,c.m.
sIAd sQ,vd =E dPW nc.m.sPW ddSv +

QW · PW

M
−

"Q2

2M
D , s3d

with M being the mass of the hydrogen molecule, and

nc.m.sPW d the hydrogen center-of-mass momentum distribu-
tion, assumed to exhibit a Gaussian functional form[34]. As
for the other symbols in Eq.(2), sds2/dV dEdr-v is the ro-
tovibrational double-differential cross section, which de-
scribes the H2 intramolecular dynamics[17], A represents an
overall normalization constant,Bsvd is a polynomial ac-
counting for multiple scattering contributions and sample-
dependent background, andRTosca,Bsvd stands for the instru-
mental energy resolution in the backscattering section[23].
In addition, a small rigid shift of the fitting function,v0, was
allowed to crudely describe any possible residual deviation
from the impulse approximation(i.e., the so-called final state
effects[35]). In the case of pure liquid hydrogen and deute-
rium, these effects are dealt with in detail in Ref.[36]. We
recall here that this fitting function contained only few inde-
pendent parameters:A, v0, two or three polynomial coeffi-
cients inBsvd, and, finally, the H2 translational mean kinetic
energy kEkl. This quantity is implied bySself,c.m.

sIAd sQ,vd
through Eq.(3):

kEkl =
1

2M
E dPW P2nc.m.sPW d. s4d

The fits, performed through aFORTRAN code coupled with
the MINUIT minimization library[37], showed that Eq.(2) is
properly describing the hydrogen component of the liquid
samples’ scattering law in the 100,"v,700 meV range.
This can be easily assessed from a simple inspection of the
reducedx2 value,xr

2 reported in Table II, together with the
experimental estimates ofkEkl. An example of the quality of
the present MYK fits is reported in Fig. 3 for sample no. 3.

B. Extraction of the H2 velocity
autocorrelation function spectrum

The extraction of the H2 velocity autocorrelation function
in bulk liquid and in mixtures with deuterium made use of
the experimental data collected in forward scattering in the

10,"v,40 meV range. The preference for the forward-
scattering data is simply justified keeping in mind the well-
known asymptotic relationship[38] between the power spec-
trum of the velocity autocorrelation function,psvd:

psvd =
2m

3pkBT
E

0

`

RekvWs0d ·vWstdlcossvtddt, s5d

wherem is the particle mass andT the temperature, and the
self inelastic structure factorSselfsQ,vd of a monatomic
fluid, namely,

psvdv.0 = lim
Q→0

FSselfsQ,vd
2mv2

kBTQ2expS−
"v

2kBT
DG . s6d

Of course, we are not able to perform any directQ→0 ex-
trapolation in our experimental kinematic conditions(see
Fig. 1), and so we will need a more elaborated procedure in
order to work outpsvd. However, choosing the lowestQ
values available is always a recommended practice in the
extraction of the velocity autocorrelation function, since at
high Q values the relevant single-excitation features are
smoothed and washed out by diffusion and multi-excitation
contributions. In the following this statement will be verified
in practice.

Going back to our forward-scattering experimental data
(already corrected for sample-container scattering and self-
absorption), we noted from Fig. 1 that in the 10,"v
,40 meV range,Q spanned from 18.2 to 37.4 nm−1. By a
simple inspection of the center-of-mass static structure fac-
tors Sc.m.sQd of liquid H2 [39] and D2 [40], it was evident
that the aforementioned incoherent approximation could not
hold in this case. Thus Eq.(1) was replaced by the more
complex relationship

TABLE II. Results of the modified Young-Koppel fitting proce-
dure for the various samples(species, temperatureT, H2 concentra-
tion fH2g are reported for clarity), including reducedx2 xr

2 and the
H2 translational mean kinetic energykEkl.

No. species TsKd fH2gs%d xr
2 kEklsKd

1 pure H2 14.1(1) 100.0 1.13 64(3)

2 pure H2 17.3(1) 100.0 1.12 62(3)

3 H2+D2 20.0(9) 54.3(3) 0.98 67(2)

4 H2+D2 20.0(2) 33.0(9) 0.82 70(2)

FIG. 3. Example of the modified Young-Koppel fitting proce-
dure on sample no. 3. Circles represent the hydrogen contribution in
the experimental spectrum, full line is its best fit, and dashed line
stands for the polynomial accounting for the multiple scattering and
sample-dependent background.
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S d2s

dV dE
D = fH2gS d2s

dV dE
D

H2

sincd

+ s1 − fH2gdS d2s

dV dE
D

D2

sincd

+ fH2g2S d2s

dV dE
D

H2

scohd

+ s1 − fH2gd2S d2s

dV dE
D

D2

scohd

+ 2fH2gs1 − fH2gdS d2s

dV dE
D

cross

sdisd

+ fH2gs1 − fH2gd

3S d2s

dV dE
D

dif f

sincd

, s7d

where the fundamental distinction among coherentscohd,
distinct sdisd, and incoherentsincd double-differential scat-
tering cross sections was introduced[18]. In addition to the
usual coherent and incoherent scattering per each nuclear
species, two other contributions have appeared: a fifth term
(namedcross) accounting for the distinct scattering due to
the interference between the signal from H2 on one side, and
the one from D2, on the other, and finally a sixth term de-
scribing the well-knowndiffusescattering[18], which has an
intrinsic incoherent character. It is easy to verify that, at this
stage, the simple subtraction of the pure D2 contribution(as
in the previous subsection) could be, at least in theory, insuf-
ficient, since three residual terms(unwanted) were not at all
removed by this procedure, namely,

− fH2g2S d2s

dV dE
D

H2

sdisd

,

− fH2gs1 − fH2gdS d2s

dV dE
D

D2

sdisd

,

2fH2gs1 − fH2gdS d2s

dV dE
D

cross

sdisd

, s8d

where the following notation has been employed:

S d2s

dV dE
D

H2

sdisd

= S d2s

dV dE
D

H2

scohd

− S d2s

dV dE
D

H2

sincd

,

S d2s

dV dE
D

D2

sdisd

= S d2s

dV dE
D

D2

scohd

− S d2s

dV dE
D

D2

sincd

. s9d

It is worth noting that these residual quantities are all dis-
tinct, i.e., concerning the correlation among different nuclei,
and “elastic,” i.e., they involve only scattering events in
which hydrogen and deuterium molecules do not change
their rotovibrational states. So, in the usual framework de-
coupling molecular translations and rotations[17], one can
write the coherent terms in the case of a H2+D2 mixture as

S d2s

dV dE
D

H2

sdisd

=
scsHd

p

k8

k
j0
2sQr0/2de−2Wvib

H2 sQd

3fSc.m.-c.m.sQ,vd − Sself,c.m.sQ,vdg,

S d2s

dV dE
D

D2

sdisd

=
scsDd

p

k8

k
j0
2sQr0/2de−2Wvib

D2 sQd

3fSc.m.D2-c.m.D2
sQ,vd − Sself,c.m.D2

sQ,vdg,

S d2s

dV dE
D

cross

sdisd

=
ÎscsHdscsDd

p

k8

k
j0
2sQr0/2de−Wvib

H2 sQd−Wvib
D2 sQd

3Sc.m.-c.m.D2
sQ,vd, s10d

where scsH,Dd are the H,D coherent scattering cross sec-
tions [41], expf−2Wvib

H2sQdg and expf−2Wvib
D2sQdg are the vi-

brational Debye-Waller factors for H2 and D2, respectively
[17], j0sxd is the spherical Bessel function of zero order,r0 is
the equilibrium intramolecular distance in H2 and D2, and
Sc.m.-c.m.sQ,vd, Sc.m.D2-c.m.D2

sQ,vd, andSc.m.-c.m.D2
sQ,vd [18]

are the H2-H2 inelastic structure factor for the centers of
mass, the D2-D2 inelastic structure factor for the centers of
mass, and the H2-D2 inelastic structure factor for the centers
of mass, respectively. Finally,Sself,c.m.D2

sQ,vd stands for the
self inelastic structure factor for the D2 center of mass. The
previous three distinct terms have to be compared with the
rotational H2 incoherent contribution, from which the veloc-
ity autocorrelation function has to be worked out. In our
energy transfer range of interest(namely, 10,"v
,40 meV) intramolecular vibrational excitations can be ne-
glected and one writes

S d2s

dV dE
D

H2

sincd

=
1

4p

k8

k o
J,J8

pJ sJ→J8sHdfJ,J8
2 sQd

3expf− 2Wvib
H2sQdgSself,c.m.sQ,vd

^ dsv − vJ→J8d, s11d

wherepJ is the relative abundance of the H2 molecules in the
initial rotational stateJ, sJ→J8sHd is the appropriate cross
section related to an incoherent transition between the initial
rotational stateJ and the final oneJ8 [17], fJ,J8sQd is the
appropriate rotational form factor[17], while "vJ→J8 is the
energy gap of this transition. Considering our samples(rich
in parahydrogen) and our energy and momentum transfer
range, it is straightforward to prove that Eq.(11) is domi-
nated by theJ=0→J8=1 transition, which is weighted by
the intense s0→1sHd=4sisHd proton cross section(4
379.9 b [41]). Thus we have simulatedsd2s /dV dEdH2

sdisd,

sd2s /dV dEdcross
sdisd , sd2s /dV dEdD2

sdisd, andsd2s /dV dEdH2

sincd in
the sQ,vd range of interest, making use of approximated
expressions for Sc.m.-c.m.sQ,vd, Sc.m.D2-c.m.D2

sQ,vd,
Sc.m.-c.m.D2

sQ,vd, Sself,c.m.sQ,vd, and Sself,c.m.D2
sQ,vd.

Namely, we employed the parahydrogen coherent scattering
datasT=15.7 Kd from Ref.[13], D2 coherent and incoherent
scattering datasT=20.0–20.1 Kd reported in Refs.[42,43],
respectively, and parahydrogen incoherent scattering data
sT=14.3–14.7 Kd from Refs.[14,15]. ThenSc.m.-c.m.D2

sQ,vd
was roughly approximated by a simple combination rule:
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Sc.m.-c.m.D2
sQ,vd . fSc.m.D2-c.m.D2

sQ,vdSc.m.-c.m.sQ,vdg1/2

− fSself,c.m.D2
sQ,vdSself,c.m.sQ,vdg1/2.

s12d

Simulation results for sample no. 4 are plotted in Fig. 4,
where it is evident that the three distinct contributions are
practically negligible if compared to the hydrogen rotational
incoherent one, and that the latter is totally dominated by the
J=0→J8=1 transition.

Summarizing, we have proved that a reliable extraction of
sd2s /dV dEdH2

sincd was obtained, even in the 10,"v

,40 meV and 182,Q,37.4 nm−1 range, making use of
the experimental pure liquid deuterium spectrum, properly
scaled to account for sample molecular densities and D2 con-
centrations. In addition, we have also shown that in the
aforementionedsQ,vd range, the quantitysd2s /dV dEdH2

sincd

contains only one relevant term, which is related to theJ
=0→J8=1 hydrogen rotational transition.

As outlined above, processed forward-scattering neutron
spectra,IH2,exptsv ,uFd, have been reduced so far for any prac-
tical purpose to the following sum of four terms only:

IH2,exptsv,uFd = AFsisHd
p

3j1
2sQr0/2dexpf− 2Wvib

H2sQdg

3Sself,c.m.sQ,vd ^ dsv − v0→1d + Msvd

+ BsvdG ^ RTosca,Fsvd, s13d

whereA is an instrumental constant,RTosca,Fsvd is the energy
resolution in forward scattering, whileMsvd and Bsvd rep-
resent the spectral contributions accounting for the overall

multiple scattering, and for the possible sample-dependent
background, respectively. To be more precise, for the
samples nos. 3 and 4,Msvd represents the multiple scattering
contribution from the mixture minus the properly scaled
multiple scattering contribution from the pure D2 measure-
ment. While Bsvd is normally determined during the data
fitting procedure, theMsvd contribution is, in general, much
more demanding. Multiple scattering has been simulated for
the pure parahydrogen samples through the analytical ap-
proach suggested by Agrawal in the case of a flat slablike
sample[28]. This procedure is fully described in Ref.[14],
and an example from sample no. 1 is reported in Fig. 5 in the
energy transfer range of interest. It is evident that the mul-
tiple scattering contribution is very low(especially for"v
,30 meV) and, moreover, it appears rather flat and feature-
less, not difficult to reproduce by a simple polynomial inv.
As for the two liquid mixtures, a complete simulation of
Msvd was a task of tremendous complexity that we decided
not to undertake. This decision was supported by the encour-
aging results obtained for samples nos. 1 and 2, and by the
fact that the two mixture samples had a scattering power
rather lower than the two previous ones. In conclusion, for
samples nos. 1 and 2,Msvd was estimated and then sub-
tracted fromIH2,exptsv ,uFd, while for samples nos. 3 and 4,
Msvd andBsvd were actually merged into one single poly-
nomialB8svd to be determined during the data fitting proce-
dure. Thus from Eq.(13) it was straightforward to extract an
experimental pseudo-self-structure factor for the para-H2
centers of mass, measured along the(QFsvd ,v) TOSCA ki-
nematic pathSself,c.m.(QFsvd ,v):

Sself,c.m.„QFsvd,vd = A Sself,c.m.„QFsvd,v… + Psvd,

s14d

where the instrumental energy resolution(0.22–0.54 meV in
our "v range) was found irrelevant for the typical width of

FIG. 4. Simulation of the rotational incoherent and residual dis-
tinct double-differential cross sections for a H2+D2 liquid mixture
corresponding to the composition of sample no. 4. TheJ=0→J8
=1 H2 incoherent contribution is reported as a full line, and sum of
the three residual distinct contributions of Eq.(8), increased by a
factor of 50 for graphical reasons, as a dotted line. TheJ=0→J8
=2 H2 rotational incoherent contribution is still too small to be
plotted.

FIG. 5. Example of the Agrawal procedure to evaluate the mul-
tiple scattering contribution for samples no. 1(i.e., liquid parahy-
drogen atT=14.1 K). Circles represent forward-scattering experi-
mental spectrum(processed) IH2,exptsv ,uFd, dashed line stands for
the simulated multiple scattering spectrum, and dotted line for the
difference between the two sets of data, i.e., for the single-scattering
spectrum.
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our spectral features and then neglected, whilePsvd was
introduced as a new version of the polynomialsBsvd or
B8svd, accounting for the sample-dependent background
and, in case, for multiple scattering. The pseudo-self-
structure factors for the para-H2 centers of mass of all four
samples were analyzed making use of the Gaussian approxi-
mation forSself,c.m.sQ,vd:

Sself,c.m.sQ,vd =
1

2p
E

−`

`

dt exps− ivtd

3expH−
"Q2

2M
E

0

`

de
fsed

e
Fs1 − cossetdd

3 cothS "e

2kBT
D − i sinsetdGJ , s15d

where fsvd is another form of the power spectrum of the
VACF, related topsvd via the fluctuation-dissipation theorem
[20]:

fsvd =
2kBT

"v
tanhS "v

2kBT
D psvd. s16d

As explained in detail in Ref.[14], a flexible and general
form for fsvd in a liquid has been proposed by Levesque and
Verlet (LV ) [44] in the framework of the canonical memory
function formalism. After some algebra, one can explicitly
write fsvd as a function of the memory-function Laplace

transformM̃sivd:

fsvd =
2

p
ReF 1

iv + M̃sivd
G , s17d

where the Levesque-Verlet model forM̃sivd reads

M̃sivd = V0
2expS−

v2

2B0
DÎ p

2B0
erfcS iv

Î2B0
D +

24 L

sa + ivd5 ,

s18d

with V0 the Einstein frequency of the system,Î2/B0 the
binary collision time,L the long-time constant, anda the
long-time exponential decay.

A nonlinear fitting procedure was set up using the math-
ematical machinery of Eqs.(16)–(18) to obtain a VACF
spectrum and then, through the Gaussian approximation, to
work out Sself,c.m.sQ,vd along the TOSCA kinematic line
(QFsvd ,v) to be compared to the experimental one. The ac-
tual fitting procedure was implemented through aFORTRAN

code making use of theMINUIT [37] standard minimizing
routine. Experimental data were fitted in the energy interval
−5,"v,25 meV. It is worth noting that these values are
meant to have already had subtracted the rotational excita-
tion "v0→1=14.53 meV, as stated in Eq.(13). As for the
Psvd polynomial, a simple straight line(two parameters) was
found to be fully sufficient for all the samples. The fit output
consisted in seven parameters: an overall normalization con-
stantA, the Einstein frequencyV0, the Gaussian binary col-
lision parameterB0, the long-time constantL, the long-time

exponential decaya, and finally the two background param-
eters: the offsetq and the slopep. Reducedx2, xr

2 and the
fsvd parameter estimates are reported in Table III for all the
four samples measured. Using Eqs.(15)–(18), the FORTRAN

code was able to automatically evaluate thefsvd spectral
function and, from this, the center-of-mass mean kinetic en-
ergy kEkl, and the self-diffusion coefficientDs, which are
also listed in Tables III and VI. Examples of the quality of
the present fits are reported in Figs. 6(a) and 6(b) for samples
nos. 1 and 3, respectively. The agreement between experi-

TABLE III. Results of the Levesque-Verlet fitting procedure for
the various samples including reducedx2 xr

2, Einstein frequency
V0, Gaussian binary collision parameterB0, long-time constantL,
long-time exponential decaya, and H2 translational mean kinetic
energykEkl. Details on the various samples are reported in Table I.

No. xr
2 "V0smeVd B0smeV2d Ls103meV6d asmeVd kEklsKd

1 1.29 7.50(5) 76(3) 1.0(1) 5.5(2) 58.7(4)

2 1.25 7.39(4) 85(3) 1.2(3) 6.4(4) 59.1(3)

3 0.55 7.8(1) 66(4) 0.5(2) 4.8(4) 64.9(8)

4 0.42 8.0(2) 62(5) 0.6(2) 4.7(3) 66(1)

FIG. 6. Self inelastic structure factor for para-H2 center of mass,
Sself,c.m.sQ,vd, measured along TOSCA-II forward-scattering kine-
matic line (circles), and its Levesque-Verlet[44] best fit (full line)
for (a) sample no. 1(pure H2) and(b) sample no. 3sH2+D2d. Both
fitted and experimental data are normalized and the polynomial
background is removed. Insets show the respectivefsvd spectral
functions obtained from the present fitting procedure. Details on the
various samples are reported in Table I.
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mental and simulated data is very good in the whole energy
interval sincexr

2 never exceeds 1.3 for all the four samples.

IV. PATH INTEGRAL MONTE CARLO SIMULATIONS

Along with the inelastic neutron scattering experiments, a
series of PIMC computations were performed simulating the
two semiquantum systems used as samples: pure H2 and
H2+D2 mixtures, choosing thermodynamic conditions very
similar to the experimental ones. Among the various PIMC
outputs, mainly the c.m. mean kinetic energykEkl will be
taken into account and discussed in the rest of the present
work.

As for pure H2, anNVT (i.e., isochoric-isothermal) PIMC
code was employed setting molecular densitysn=N/Vd and
temperatureT to values extremely close to the measured
ones: n=22.91 nm−3, T=14.3 K, and n=22.10 nm−3, T
=17.2 K, respectively, for samples nos. 1 and 2. Simulations
were carried out using the semiempirical isotropic pair po-
tential derived by Silvera and Goldman[45], and still con-
sidered one of the most reliable for para-H2 and ortho-D2 in
low-temperature condensed phases. The PIMC algorithm
was accomplished by extending the number of monomers
(the so-calledTrotter number P) of N=500 ringlike poly-
mers, which in the PIMC isomorphism[46] represent the
quantum particles of H2, from P=8 to 16, 32, and 64. How-
ever, only small differences were observed betweenP=32
and P=64 results for bothkEkl and the Einstein frequency
V0. This code has been already successfully employed in a
number of simulations on solid and liquid para- H2 [14,47],
and on liquid ortho-D2 [48]. The PIMC estimates ofkEkl and

V0 are listed in Table IV, while further details on these simu-
lations can be found in Ref.[14], where they are presented in
wider thermodynamic range.

Concerning the quantum calculations on the H2+D2 liq-
uid mixtures, anNpT (i.e., isobaric-isothermal) PIMC code
has been used, fixing pressure and temperature top=0 and
T=21.3 K, respectively, which are values not far from the
experimental conditions of samples nos. 3 and 4, as shown in
Table I. Simulations were still performed using the semi-
empirical pair potential by Silvera and Goldman on a set of
N=180 ringlike polymers composed ofP=64 beads each.
The H2 concentration was varied from 0% to 20%, 40%,
50%, 60%, 80%, and 100% by altering the ratio of H2 to D2
rings (the D2 bead mass being twice the H2 one). In this case
the main outputs of theNpTPIMC code were the total molar
volume of the mixturev, and the c.m. mean kinetic energies
for both H2 and D2, all of which are reported in Table V. The
first of these physical quantities provided a straightforward
test of the present quantum simulations, being easily com-
pared with the experimental values ofv, extracted from the
saturated vapor pressure thermodynamic data on pure H2
[24] and D2 [25], and then corrected for the excess properties
of the H2+D2 mixture [26]. As shown in Table V, even
though the agreement is still not perfect(the discrepancy
between the two sets ofv values being on the order of 1.5%),
it is noteworthy that theNpT PIMC code is able to correctly
capture the nonideal character of the H2+D2 liquid mixture,
like the sign and the order of magnitude of the relative ex-
cess volumesdv /vd. A more detailed analysis of these as-
pects of the quantum simulation of hydrogen-based mixtures
will be found in a forthcoming work[49].

V. DISCUSSION

The aim of this section is to critically compare the various
results obtained through the three different approaches used
to deal with our samples, namely, the MYK fit, the LV fit
used in conjunction with the GA, and the PIMC simulations.
We will see in the following that this comparison will force
us to seriously question the validity of the Gaussian approxi-
mation used in Sec. III. So, after performing some crucial

TABLE IV. Results of theNVT PIMC simulations on pure H2,
including Einstein frequencyV0 and center-of-mass mean kinetic
energykEkl. Reported uncertainties represent only the PIMC statis-
tical errors.

nsnm−3d TsKd "V0smeVd kEklsKd

22.91 14.3 9.14(1) 61.4(1)

22.10 17.2 8.90(2) 61.3(1)

TABLE V. Results of theNpT PIMC simulations on H2+D2 mixtures atT=21.3 K andp=0, including
total molar volumev, relative excess volumesdv /vd, H2 center-of-mass mean kinetic energykEkl, and D2

center-of-mass mean kinetic energykEklD2
. Reported uncertainties represent only the PIMC statistical errors.

Experimental values for the total molar volumevexpt and the relative excess volumesdv /vdexpt, both derived
from saturated vapor pressure data[24–26], are also included.

fH2gs%d vscm3d sdv /vds%d kEklsKd kEklD2
sKd vexptscm3d sdv /vdexpts%d

0.0 23.648(3) 57.06(1) 23.92

20.0 24.466(6) −0.45s3d 72.70(3) 55.47(2) 24.75 −0.71

40.0 25.330(5) −0.69s3d 70.26(3) 53.97(2) 25.65 −1.12

50.0 25.778(7) −0.74s4d 69.02(3) 53.25(2) 26.13 −1.19

60.0 26.240(7) −0.74s4d 67.86(2) 52.50(2) 26.63 −1.18

80.0 27.221(4) −0.52s4d 65.61(2) 51.08(5) 27.72 −0.85

100.0 28.29(1) 63.40(2) 28.97
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tests, we will definitely prove the breakdown of the GA if
applied to the present semiquantum liquids.

A. ŠEk‹ and V0: Comparison between fits
and PIMC simulations

A comparison between the experimental estimates of the
H2 c.m. mean kinetic energy(via both MYK and LV), and
the PIMC results can be found in Tables II, III, IV, and V but
it is more clearly visible in Figs. 7(a) and 7(b), respectively
for pure H2 and H2+D2. In the former panel one observes
that PIMC simulations indicate an almost flat behavior of
kEkl as a function of the liquid temperature in density con-
ditions very close to the saturated vapor pressure ones
[14,24]. This fact can be simply understood since, as the
temperature rises, the small decrease of the density contribu-
tion to the c.m. mean kinetic energy is compensated by an

increase of the thermal contribution tokEkl. As for the ex-
perimental estimates of this physical quantity, one can imme-
diately conclude that the MYK result, despite its large uncer-
tainties (about 10%), is in good agreement with the PIMC
calculations, while the LV result is intrinsically less uncertain
(about 1%), but systematically lower than these. A similar
disagreement can also be observed concerning the Einstein
frequency: experimental estimates from LV and PIMC re-
sults are compared in Tables III and IV, and found incom-
patible. Figure 7(b) reports the H2 c.m. mean kinetic energy
behavior at constant pressure and temperature as function of
the H2 concentration, which is related via Table V to the total
molar volumev. PIMC simulations predict a linear decrease
of the hydrogenkEkl along with its concentration, which can
be explained as an effect of the total molecular density: the
presence of a larger amount of quantum-delocalized H2 mol-
ecules makes the mixture less dense and, as a consequence,
the H2 c.m. mean kinetic energy drops. Once again, as far as
the experimental estimates ofkEkl are concerned, one ob-
serves that the MYK result is always in agreement with the
PIMC calculations, unlike the LV results which are system-
atically too low.

B. Breakdown of the Gaussian approximation
in semiquantum liquids

As we have seen in the previous subsection, two physical
quantities derived fromfsvd (namely, the mean kinetic en-
ergy of the H2 c.m. and its Einstein frequency) showed small
but appreciable discrepancies both from the present experi-
mental determinations through the MYK fit, and from the
PIMC simulated values, reported in Tables II and IV, respec-
tively. In addition, a similar trend can found if thefsvd esti-
mates of the self-diffusion coefficientDs are analyzed(see
Table VI). In the latter case, in order to set up a comparison,
we have to rely on the experimental determinations ofDs for
liquid H2 and H2+D2 solutions[50]. After an accurate inter-
polation of the measurements reported in Ref.[50] (see Table
VI ), we can conclude that, despite the large uncertainty(big-
ger than 20%) associated with the latter data, the agreement
between the two estimates ofDs is totally satisfactory only
for sample no. 1. In all the other cases, the LV determina-
tions of Ds appear systematically too low.

These findings were already objective elements against
the GA validity in our experimental conditions, but, at this
stage, possible biases deriving either from the followed data

FIG. 7. Center-of-mass mean kinetic energykEkl of a H2 mol-
ecule estimated by fitting TOSCA-II experimental measurements
and through PIMC simulations.(a) ExperimentalkEkl in pure liquid
hydrogen obtained making use of the modified Young-Koppel
model [17] (full squares), and employing the Levesque-Verlet
model [44] for the canonical memory function(open circles). Re-
sults from NVT PIMC quantum simulations are shown as full
circles, black line being a data spline. PIMC data have been also
reported elsewhere[14]. (b) ExperimentalkEkl in liquid hydrogen-
deuterium mixtures obtained making use of the modified Young-
Koppel model[17] (full squares), and employing the Levesque-
Verlet model[44] for the canonical memory function(open circles).
Results fromNpT PIMC quantum simulations are shown as full
circles, black line being a data spline. The experimental value for
the modified Young-Koppel model atfH2g=100% [T=21.2s2dK,
n=20.83s9dnm−3] is taken from a previous work[31].

TABLE VI. Self-diffusion coefficientsDs derived from the
Levesque-Verlet fitting procedure for the various samples. Hydro-
dynamic self-diffusion coefficientsDs

shydd derived from the literature
[50] are also reported.

No. Dss10−5 cm2 s−1d Ds
shydds10−5 cm2 s−1d

1 2.99±0.03 3.6±0.8

2 4.63±0.03 6.4±1.4

3 3.7±0.1 6.4±1.5

4 3.3±0.1 5.4±1.4
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reduction procedure(see Sec. III), or even from the LV
model itself, could not be totally ruled out. For example, the
latter might have been not flexible enough to reproduce the
physical quantities under discussion despite the good quality
of the reported fits. Unfortunately no substantial help on this
point can be gained from the existing quantum dynamic
simulations of the VACF: even restricting our check to pure
liquid parahydrogen atT=14.1 K, one can see in Fig. 8 that
Feynman path centroid dynamics(FPCD) [15] (T=14.7 K,
n=24.18 nm−3) and self-consistent quantum mode-coupling
theory [8] (T=14 K, n=23.5 nm−3) data are so discrepant
from each other that they are not very useful to assess the
reliability of our LV model for fsvd. In our opinion the two
simulated and the experimentalfsvd’s cannot be reconciled
with one another, even taking into account the possible dif-
ferences induced by the choice of slightly discrepant thermo-
dynamic conditions. It is interesting to point out that the
experimentalfsvd seems to compare rather well with the
FPCD determination in the low-energy region(say for "v
,2.6 meV), while for "v.6 meV a fair agreement is found
with the SCMCT. The origin of this crossover is actually
quite unclear and we think it deserves further investigation.
In order to quantify the comparison among the variousfsvd
determinations, the mean kinetic energy, and Einstein fre-
quency for the simulated data are also reported:kEkl
=63.2s1d and 66.8s1dK, "V0=9.37s1d and 9.80s1d meV, for
the Feynman path centroid dynamics and the self-consistent
quantum mode-coupling theory, respectively. As for the self-
diffusion coefficient, one obtainsDs=3.5310−5 and 3.0
310−5 cm2 s−1 again for the FPCD and the SCMCT, respec-
tively. The experimental values of the aforementioned physi-
cal quantities are reported in Tables III and VI in the line
concerning sample no. 1.

In order to clarify the crucial point of the GA validity, we
decided to set up a model-independent test: thefsvd func-
tions (see Table III) fitted from the various experimental
Sself,c.m.(QFsvd ,v) spectra using the LV form(as in Sec. III

B) were employed to generate new self inelastic structure
factors for the H2 center of mass by means of the GA. How-
ever, thesQ,vd trajectory chosen was the one related to the
backscattering detectors, namely,(QBsvd ,v). In this
way a set of simulated Sself,c.m.(QBsvd ,v) [labeled

S̃self,c.m.(QBsvd ,v) in what follows] was produced including
all the four measured samples. At the same time, the corre-
sponding experimentalSself,c.m.(QBsvd ,v) were worked out
from raw neutron backscattering data, following exactly the
same procedure as for the forward-scattering ones(see Sec.

III B ). Then simulatedS̃self,c.m.(QBsvd ,v) were compared to
experimentalSself,c.m.(QBsvd ,v), allowing for an additional
linear polynomialPsvd to take into account a possible spu-
rious background still present in the TOSCA data. The re-
sults were deeply surprising(see Fig. 9 for two selected ex-
amples) and the disagreement between GA-simulated and
experimentalSself,c.m.(QBsvd ,v) was so strong as to point
out, beyond any reasonable doubt[e.g., the form ofPsvd],
the failure of the Gaussian approximation.

Since most of the disagreement between

S̃self,c.m.(QBsvd ,v) and Sself,c.m.(QBsvd ,v) seems concen-
trated in the low-energy region −2.5,"v,5 meV (actually

FIG. 8. Comparison among liquid H2 spectral functionsfsvd
obtained from the Feynman path centroid dynamics[15] at T
=14.7 K andn=24.19 nm−3 (solid line), from the quantum mode-
coupling approach[8] at T=14.0 K andn=23.5 nm−3 (dashed line),
and from a Levesque-Verlet fit[see Eq.(18)] of the experimental
data atT=14.1 K andn=22.95 nm−3 (sample no. 1, dotted line).

FIG. 9. Sself,c.m.(QBsvd ,v) of liquid samples from TOSCA-II
backscattering section, experimental(circles) and reconstructed
from forward-scattering data through the Gaussian approximation
(full line). (a) Liquid H2 at T=14.1 K; (b) sH2+D2d mixture
(fH2g=54.3s3d%, T=20.0s9dK).
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dominated by diffusive motions), a heuristic physical de-
scription of these findings might be sketched as follows. An
effective Q-dependent self-diffusion coefficientDs,ef fsQd
would exhibit a noticeable decrease on moving from the hy-
drodynamic regimeQ.0, to the TOSCA-II forward-
scattering conditionssQ.22 nm−1d, and, finally, to the
TOSCA-II backward-scattering conditionssQ.39 nm−1d.
This idea appears supported also by the fact that our deter-
minations ofDs from TOSCA-II forward-scattering data ap-
peared generally lower than the ones by O’Reilly and Peter-
son [50], which are basically hydrodynamic. But what is a
plausible reason for this peculiarQ behavior? Let us associ-
ate the increasing ofQ with the probing of a smaller space
periodicity d, whered,2p /Q. One then obtains thatDs,ef f
decreases together withd. But this is exactly what happens in
the simplest non-Gaussian scenario for self-diffusion[the so-
called jump diffusion model(JDM)] wheneverd becomes
smaller thanl0, the typical site-site distance for the jump.
Actually in the JDM one writes[1]

Ds,ef fsQd =
1

t0Q
2S1 −

1

1 + l0
2Q2D =

Ds

1 + l0
2Q2 , s19d

wheret0 is the residence time in one site. Values ofl0 have
been determined through Eq.(19) by using, in addition to the
Ds determinations atQ=0 [50] and at Q.22 nm−1 (see
Table VI), a third set of values, atQ.39 nm−1, derived from
a LV fit of the backscattering data. These are the best esti-
mates of l0 obtained: l0=0.22s2d, 0.32(1), 0.25(3), and
0.24s2dÅ for samples nos. 1, 2, 3, and 4, respectively. What
is the meaning of these figures of the order of 0.2–0.3 Å?
And, moreover, has the JDM anything to do with our semi-
quantum samples? Presently we cannot answer these impor-
tant questions: further experimental and simulation work on
semiquantum systems will be surely needed to shed more
light on this intriguing subject.

Finally, just to exclude any possible instrumental reasons
for our experimental findings about the GA breakdown, we
also performed an additional measurement on solid polycrys-
talline para-H2 at T=13.3s1dK, where the GA is better
founded and has been experimentally verified[51]. Recorded
scattering data had the sharp elastic line removed, were cor-
rected for multiple scattering and self-absorption as in Sec.
III, and then transformed into center-of-mass scattering law
through Eq.(13). The result(reported in Fig. 10) clearly
shows that the agreement betweenSself,c.m.(QBsvd ,v) and

S̃self,c.m.(QBsvd ,v) is really satisfactory. Further details about
solid para-H2 data analysis and interpretation can be found in
Ref. [52].

VI. CONCLUSIONS

In conclusion, in the present work we have measured the
incoherent inelastic neutron spectrum of liquid parahydro-
gen, pure and mixed with liquid orthodeuterium, in various
thermodynamic and concentration conditions, using the time-
of-flight neutron spectrometer TOSCA-II. The measured
double-differential cross sections have provided direct ex-
perimental access to the self part of the inelastic structure

factor for the centers of mass of the H2 molecules in the four
samples under observation. Measured data were corrected for
the typical experimental effects, and then analyzed in the
framework of the modified Young-Koppel model to remove
the contributions coming from the intramolecular(rotovibra-
tional) dynamics. From the high-energy part of the processed
data, the center-of-mass mean kinetic energy of a H2 mol-
ecule has been estimated in the framework of the impulse
approximation for the molecular translational dynamics in
the liquid. On the other hand, the Gaussian approximation
has been assumed for the low-energy spectral range, aiming
to relate the incoherent scattering law of the liquid samples
to the energy spectrum of their velocity autocorrelation func-
tions. These correlation functions were subsequently ob-
tained from a fitting procedure, making use of the quantum
generalized Langevin equation and the Levesque-Verlet
memory function model. Two moments and the zero-
frequency value of the energy spectrum of the velocity auto-
correlation function were then related to important physical
quantities(namely, center-of-mass mean kinetic energy, Ein-
stein frequency, and self-diffusion coefficient), and the first
was also simulated through two distinct path integral Monte
Carlo codes, respectively for pure H2 and for H2+D2 mix-
tures. The results of these comparisons turned out very inter-
esting and showed that the H2 center-of-mass mean kinetic
energies experimentally evaluated using the modified Young-
Koppel fitting procedure were in good agreement with the
path integral Monte Carlo estimates, unlike the figures ob-
tained from the joint use of the Gaussian approximation and
the Levesque-Verlet memory function, casting some doubts
on the validity of the Gaussian approximation itself in the
present context. A similar impression was also inferred by
comparing the Levesque-Verlet estimates of the H2 self-
diffusion coefficient with the hydrodynamic values known in
literature. For this reason a model-independent check of the
Gaussian approximation was set up for all the experimental
measurements, exploiting the two different trajectories in the
energy-momentum kinematic plane explored by the
TOSCA-II instrumental sections: forward-scattering and

FIG. 10. Sself,c.m.(QBsvd ,v) of solid H2 at T=13.3 K from
TOSCA-II backscattering section, experimental(circles) and recon-
structed from forward-scattering data through the Gaussian approxi-
mation (full line). Elastic line has been removed from the experi-
mental data.
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backward-scattering banks. It was shown that, despite the
excellent quality of the Levesque-Verlet fits, the velocity au-
tocorrelation functions derived from the forward-scattering
data appear totally unable to properly describe the backward-
scattering ones. These findings have proved an unquestion-
able breakdown of the Gaussian approximation in liquid
parahydrogen and in its mixtures with orthodeuterium in the
kinematic range explored by the spectrometer. The present
results appear of great interest, suggesting the need to apply
extreme care in the use of the Gaussian approximation con-
cerning liquid H2 and other semiquantum fluids. In addition,

it is also suggested that further and more extensive neutron
scattering studies on the breakdown of the Gaussian approxi-
mation, including a wider mapping of the kinematic plane,
are greatly needed.
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